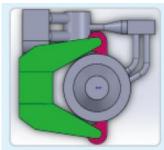

Интегрированная система утилизации избыточного тепла для сухого тушения кокса для пылеудаления при высокой температуре

Наша компания совместно с Beijing Huatai Yongchuang внедряет технологию высокоэффе ктивной системы сухого тушения кокса с циклонным сепаратором водяным охлаждением для разработки первого в Китае комплекса интегрированной системы сухого тушения кокса для у даления пыли в Китае, который обладает такими характеристиками, как длительный срок слу жбы, высокая эффективность и защита окружающей среды. Это исследование получило ряд н ациональных патентов и было реализовано в рамках проекта Цзяньюань во Внутренней Монг олии.

• Технический принцип

Технология высокоэффективной системы сухого тушения кокса с циклонным сепараторо м водяным охлаждением используется для снижения концентрации коксового порошка на вхо де в котел и полного решения проблем, связанных с системой сухого тушения кокса, таких ка к прорыв труб и обрушение подпорных стенок в котлах-утилизаторах.

Обычная система котела-утилизатора су хого тушения кокса	Интегрированная система утилизации избыточного тепл а для сухого тушения кокса для пылеудаления при высок ой температуре:
1.Тушение котела	1.Тушение котела
2. Первичный гравитационный пылеуловит ель	2. Циклонный сепаратор водяным охлаждением
3. Котел-утилизатор	3. Котел-утилизатор
4. Вторичный пылеуловитель	4. Вентилятор
5. Вентилятор	5. Экономайзер (теплообменник с тепловыми трубами)
6. Экономайзер (теплообменник с тепловы ми трубами)	


•Технические параметры

Наименование	Единица измерения	Нормальный режим
Объем тушения кокса	t/h	80-280
Номинальный объем пара	t/h	40-150
Температура пара	°C	450-571
Давление пара	MPa	3,82-14,2

Интегрированный котел утилизации избыточного тепла для сухого тушения кокса для пы леудаления при высокой температуре может широко использоваться в различных генераторны х установках для сухого тушения кокса

•Технические особенности

Длительный срок службы:

- Сократить износ котлов и срок службы труб котлов-утилизаторов увеличится с 4 до 10 лет.
- Водяное охлаждение защищает материал для заливки в циклон, а срок службы огнеупорного материала увеличивается
- Увеличивается срок службы кронштейна в печи сухого тушения и кольцевых дыхательных путей
- Отменить многотрубный вторичный пылеуловитель, чтобы умень шить количество отказов системы

Высокоэффективность:

- При использовании параметров сверхвысокой температуры и сверхв ысокого давления мощность выработки электроэнергии из тонны кок са увеличивается на 13%
- Использование циклонной сепарации позволяет создать условия для обеспечения высоких параметров печи сухого тушения

Охрана окружающей среды:

- Экономия 30%-40% земли по сравнению с предыдущим плано
- Длительный срок службы системы позволяет повысить эффективнос ть сухого тушения

• Сравнение производительности

Возьмем в качестве примера проект установки чистого конденсатора для тушения кокса произ водительностью 190 т/ч:

Наименование	Средняя темпе ратура и средне е давление	Высокая тем пература и в ысокое давле ние	Интегрированная система для пыле удаления при высокой температуре (с высоким давлением и высокой температурой с подогревом)
Выработка электроэнергии из тонны кокса (кВт.ч)	130	150	170
Годовой объем выработки эле ктроэнергии (десять тысяч кВ т.ч)	26520	30600	34680
Годовой доход от выработки э лектроэнергии (десять тысяч юаней)	7956	9180	10404

Экономия энергопотребления из тонны кокса (КгСе/т)	41,6	48	54,4
Площадь занятой земели	Большая	Большая	Экономия 30%-40%
Срок службы нагреваемой по верхности (год)	4	4	>10

•Руководитель производственного направления

Тан Сичжун ТЕЛ: 13551312480